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SUMMARY

A simple, direct procedure is developed for converting frequency-domain
aerodynamics into indicial aerodynamics. The data required for aerodynamic
forces in the freguency domain may be obtained from any available (linear)
theory. The method retains flexibility for the analyst and is based upon the
particular character of the frequency-domain results. An evaluation of the
method is made for incompressible, subsonic, and transonic two-dimensional flows.

INTRODUCTION

For many years, unsteady aerodynamic theories and applications have focusrd
primarily on the frequency domain since the aerodynamic calculation is simpli-
fied if the motion of an airfoil or lifting surface is restricted to be simple
harmonic (refs. ' and 2). However, for applications to aeroelastic systems with
feedback control and for aeroelastic systems with structural ncnlinearities, it
is of considerable value to represent the aerodynamic forces ir. the time domain.

For an aerodynamic theory which is linear in the motion of the aeroelastic
system, there is a fundamental correspondence between the freguency and time
domains through a Fourier transform pair (refs. 1 to 3). Such a linear theovry
may still include important physical effects such as shock wave motions in the
transonic regime which are sometimes, incorrectly, thought of ac being invari-
ably nonlinear. 1In principle, if the aerodynamic forces are known at a suffi-
cient number of frequencies, a numerical inversion to the tirwe~domain represen-
tation is always possible. Such an inversion is rarely practical, however,
because the aerodynamic forces are only known at a relatively swall number of
frequencies. Instead, a parameter identification approach is usually employed
whereby time histories of aerodynamic forces are assumed tc be sums of exponen-
tials. The time constants and coefficients are chosen to give a best fit to
the fiequency representation of the aerodynamic forces which has been obtained
numerically by some appropriate aerodynamic solution procedure.

Such representations in the time domain date from the early work of Jones
(ref. 4) and extend to the recent interesting work of Roger (refs. 5 and 6)
and Vepa (ref. 7). Roger employs a particularly straightforward procedure for
determining his representations while Vepa uses Pade approximants and a least-
squares method. Abel (ref. 8) and Dunn (ref. 9) have subsequently improved upon
these methods. It is the purpose here to develop a simple, systematic parocedure
for time-domain representations which retains flexibility for the analyet and is
based upon the particular character of the frequency-domain results. An evalua-
tion of the method is made for incompressible, subsonic, and transonic two-
dimensional flows. No difficulty is anticipated in using the method for three-
dimensional flows where results are available for the frequency representation
of the aerodynamics. Finally, although not emphasized here, the general proce-
dures may be useful when it is desired to convert from time~domain representa-
tions 0 freguency-domain representations. Such applications might arise when
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finite-difference aerodvnamic calculations lead directly to time-domain results
(ref. 10). Marc H. Williams, of Princeton University, piovided the freguency-
domain data used in tlic compressible-flow examples.

SYMBOLS
aj coefficients of exponential time representation
b airfoil half-chord
b; exponents of expaonential time representation
Cc Theodorsen function
Cr, lift coefficient
Cr,, lift coefficient due to heaving
CLQ lift coefficient due to pitching
Cy moment coefficient
CME moment coefficient due to heavina
CMu moment ccefficient due to pitching
D denominator in polynomial representation of Theodorsen function
F real part of Theodorsen function
G imaginary part of Theodorsen function
h heaving displacement.
I total number of terms in sum
i (-1)1/2; also, index for summation
k reduced frequency, wb/U
L lift
M Mach number
N numerator in polynomial representztion of Theodorsen function
t time
U free-stream velocity
Q angle of attack; also, angle of pitch



I\ fluid density

1 dimensional time, Ut /b

$ Wagner function

deorPem transient aerodynamic functions
) frequency

Superscript:
PT piston taeory

Suascripts.

1 imaginary part
R real past
max maximum

A bar over a symbol derotes Fourier transform; a dot over a symbol denotes

derivative with respect to time.

BASIC APPROACH

For definiteness, considier same aerodynamic generalized force,
due to same step change in a motion variable, say h/U.

;'l/'U = 1

h'o=~0

Assume C; may be represented by

1
A\ b.1
L = sge!
i
C. =0

say Cg,
> 0)
< 0)
~ o)
~ 0)
bi <

where the a;,b; are yet to be determined but it is anticipated that

Taking the Fourier transform of eguaticns (1) and (2),

(1a)

(1b)

(2a)

(2b)
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where a bar above a quanticy denotes Fourier transform and k is the transform
variable. Taking the real and imaginary parts of equation (3),

\
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At this point, there are two important guestions:

(1) Is a representation such as equation (3) or equations (4) capable of
matching the known behavior to arbitrary accuracy by increasing the number of
terms retained in the series? This question is answered in the affirmative by
numer ical examples and, in the special case of inocampressible flow, the ana-
lytical results of Desmarais (ref. 11).

(2) How can aj,b; oe determined conveniently, simply, and unambiguously?
Vepa has suggested a (modified) least-squares procedure for determining aj
and b; Here a simpler procedure is used. The b; are determined by the

extreasa of "’él/g\‘l? then the a; are determined by a least-squares fit to the
frequency-domain data for .I\EL/E\,I only, subject to the two constraints that
the real part is identically satisfied at k = 0 and . The resultant

(éx/f’\*n is then predicted at intermediate k values. Moreover it is assumed

that the b;, which are the poles of the aerodynamic transfer function (see
eg. (3)), are independent of the particular generalized foroe and motion and
are inherent characteristics of the dynamics of the fluid. Vepa anticipated
this assumption would be useful but did not pursue it. The procedure is shown
in this paper to give good results. Dunn (ref. 9) has adopted this assumption
partially by using the same bj for each distinct type of motion, e g., heave
and pitch.



For completeness, Roger‘'s proocedure is also briefly described here
{(refs. 5 and 6). A maximum value of reduced freguency kpax s selected which
is an upper limit on the frequency range of interest. Wext the b; are chosen
as

i
bi T - .I. kux (i = o' l' 2' 3' . . e I)

The a; are then determined by a least-squares procedure using both real and
imaginary parts of the aerodynamic transfer functions (matrix elaments).
Another characteristic of Roger's procedure, though not absolutely euasential,
is that the procedure is applied to the aerodynaxic influence matrix relating
pressure to dowrnwash, rather than to the matrix relating generalizad forces to
generzlized ~cordiratc;. This automatically insures all motions and resultant
aeruvdynamic forces are treated on a common basig. Finally, the limits k + 0
and k + @ are not enforoed as constraints in Roger's method. Abel (ref. 8)
has modified Rcger’s method to enforce the constraints at k = 0.

From both a theoretical and practical point of view, it is better to select
only the imaginary part of the aerodynamic transfer function to construct che
representation and to allow the real part to be predicted. From a practical
point of view, this approach provides an internal chack against: (1) numerical
errors in the frequency-domain data and (2) deviations of aerodynamic data from
linearity in the motion if they ara taken from experinent or finite-difference
calculations. From a theoretical point of view, th2 real and imaginary parts
are those associated with a single time-dependent function. Thus, oconstructing
a valid representation of the imaginary part is sufficient to insure a valid
representation of the real part. In principle, of course, an alternate approach
is to construct the representation using the real part of the aerodynamic trans-
fer function and predict the imaginary part. It will became clear in the fol-
lowing examples, howewr, why this alternate approach is not the preferred
choice,

INCOMPRESS IBLE FLOW

For linear, potential, inoompressible, two-dimensional flow, the fluid
unsteadiness is characterized in the frequency domain by a single functionm,
the Theodcrsen function C(k). It is related to the Wagner function ¢ which
is the lift due to 4 step change in downwash at the airfoil three-quarter chord
{(usually said tc be a step change in angle of attack) through a Fourier trans-
form pair (refs. ! and 2), i.e.,

a
1 * C(k)
¢ 2n .\ ik (
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C(k) = ik S‘Q(t)e’““ ar (6)

Following the basic approach, assume that ¢ may be represented by

I

(1) = V aiebir (t >0 (7a)
ya,
i=1

#(t) =0 (t < 0) (™)

Using equations (€) and (7), the corresponding representation of Theodorsen's

function is
I ikag
C(k) = S‘ — (8)
ic.-:1 (-bi + 1k)

or, in terms of its real and imaginary components C = P + iG,

I

a;k2
F= Y ,1—5 (9a)
. bf +k
i=1

1 ajbik
G = -3‘ 33 (9d)

2
i‘:’.l b +k

The frequency-domain resuits for P and G are well known (refs. 1 and 2)
and are shown as dashed lines in figure 1. The Fuesstion is how to determine ag
and bj. Pirst consider the aj. As k+ 0, P+ 1; andas k+ » P+ 1/2
These limits are well known for any aerodynamic theory, since k + 0 is the
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steady-flow limit and k * ® jis given in general (though not for M = 0) by
the piston theory (refs. ! and 2).

Requiring equation (9a) to satisfy these liwits means b; = ¢ and
a) = P(k=0) = 1 so that
8] + 82 + e e o ¥ ?(k'w’ = ‘/2 (lo)
Consider now equatior (9b) and, for simplicity, let I = 2 so that only bj
remains “o be determined. There are varicus ways this might be done, e.g.:

(1) Collocation, i.e., require by to be such that equation (9a) or (9b)
is exactly satisfied at some intermediate k

0<k<ew

(2) Least squares, i.e., require equation (9a) and/or (9b) be satisfied
in a least-squares sanse

Strictly, this second approach leads in general to a nonlinear equation for
the bj. Vepa (ref. 7) avoids this difficulty by rewriting equation (8) as
a ratio of two polynomials:

N(ik)
D(ik)

C(k) = (1)

and then multiplying equation (11) through by D, i.e.,

D(ik)C(k) = N(ik) (12)

before applying the least-gquares procedure to determine the coeificients in the
polynominals of N and D. This approach does lead to lincar algebraic equa-
tions for these coefficients. While the procedure put forward below is no more
rigorous fundamentally than that of Vepa, it avoids two objections which might
be raised about Vepa's procedure. Pirst, the b; retain their individual
identity and are not lost in complicated expressions for thke polynomial coef~
ficients of N and D; second, equation (8), or actually equation (9b), is
satisfied in a least-squares sense (to determine aj) and not the mcdified
equation (12). Satisfying equation (12) in a least-squares sense gives undue
weighting to high k values.

The procedure suggested here for determining by, is simple. PFor I = 2,
since by = 0,



azbak
G = -

(13)
b2 + K2

Now G =0 at k = 0,0 (which eq. (13) already satisfies) and hag an extremum
at k = 0.2, (See fig. 1.) Equation (13) has ar extremum, using elementary
calculus, at

k = tby (14)

Hence, select by = -0.2; the minus sign gives the correct sign of G and
also provides a stable aerodynamic system. The corresponding approximants to
P and G are shown as solid lines in figure 1 along with their exact counter-
parts. The agreement is reasonable, though certainly imperfect.

The approximant can be improved by increasingy I. The question then
becomes how to determine the other bj;. If there were several extrema for G
(and they wece well separated as is typical for the imaginary parts of aero-
dynamic generalized forces when multiple peaks occur), then a value of bj
would be selected to be equal to the -k value at each prak. In the present
example, however, since no other extrema are present, additional b; are
simply added on either side of -0.2 to improve the approximation. In figure 2,
results are shown for by = 0, by = -0.1, b3 = -0.2, and by = -0.4 and in
figure 3 for by =0, by = -0.05, by = -0.2, and bg = 0.6. Note that the b;
on either side of an extremum are chosen here by inspection and iteration. This
simplifies the procedure but presumably incurs some 1988 of accuracy compared to
determining the b; as part of a least-squares solution procedure. The cor-
responding a; were determined, after the b; were selected, by a least-
squares fit to equation (9b) for a selected number of k values subject to the
constraints of equation (10). The procedure is standard using Lagrange multi-
pliers to invoke the constraints, and the details are omitted. Up to 27 values
of k were used, although 15 gave essentially the same rosults and as few as 5
gave reasonable results.

The representations of figures 2 and 3 are much improved over those of
figure 1, with those of figure 3 being samewhat better than those of figure 2.
They could be iaproved further by increasing I. However, this seems unnaces-
sary; instead, camparisons with alternative representations are considered.

The well-known representation of Jones (refs. 1, 2, and 4) is shown in fig-
ure 4. This corresponds to I =3 with by = 0, by = -0,0455, by = -0.3 in
the present model, but the aj; were not determined by Jones using a least-
squares procedure. Using Jones' values of the b; and a least-scuares proce-
dure to determine the a; changes the details of the representation, although
it is not noticeably improved. (See fig. S5.) Thus, it is concluded that Jones'
aporoximant is less accurate than the present I = 2 approximant; the basic
reason for thia is the number and choice of poles.



In figure 6 the by are chosen from Desmarais’ continued fraction repre-
sentation (ref. 11) of Theodorsen's function for I = 4 (to be Aisc¢ri- 2~ Tur-
ther in following sections). The regcults are comparable to those sgiscin ea. . »r
for I = 4, but are not better as far as one can judge. PFinally, /. rhould =
noted that Vepas (ref. 7) using his more elaborate proceducre Mas alsc obtained
excellent represertations of F and G.

The quantity by is assumed to be reai, although from a mathematical point
of view, complex ccnivgate pairs are permissibie. Alsc, all poles are assumed
to “~ simple ones, e.g., no double poles. Cumplex and double poles were inves-
tigaced numerically, but their inclusion gac~ no noticeable improvement. This
result is consistent with Desmarais' cortinued fraction representation which
shows that only simple poles exist aloi., the negative, imaginary k-piane axis to
any order of approximation. Also, see the discussion or Edwardr in reference 3.

Continued Praction Representation

Let us now turn to a brief review of the wvery interesting results of
Demmarais (ref. 11 for the support they lend to the admittedly heuristic
procedure describec ibove. Desmarais has established the following continued
fraction representation of Theodorsen's function:

-1/2
C (k) .1,__.(.._{_)_

This infinite fraction may be truncated to obtain approximations of varicus
orders, and Desmarais has developed convenient recursion formulas for these.
At any order of approximation, C(k) 1is represented by a ratio of polynomials.
All of the poles are along the negative imaginary k-axis (corresponding to
negative, real by), i.e., the branch cut of Theodorsen's function. The poles
become infinitely danse as the order of the approximation is irncreased. The
contiruved fraction representation converges everywhere in the complex k-plane
except along the branch cut. Thus, Theodorsen's function has nc poles, except
possibly along the branch cut.



The practical significance of the above results is that, although in fact
there are no poles of C(k), one may expect to obtain an approximatio:n of
any desired accuracy by representing C(k) as a rational function whose poles
are all along the negative, imaginary k~axis.

Por additional discussion of the continued fraction model, see Desmarais
(ref. 11). Bven tnough there is no known counterpart for compressible flow, |t
is possible a similar situation sxists. Por subsonic flow, at small k the
aerodynamic forces behave very much as for incompressible flow, while for large
k the aerodynamic forces will asymptotically approach those of “"piston theory.”
Pinally, it is worth mentioning that, for a given number of poles the least-
squares procedure may be used to obtain a better match with the true C(k) than
the continued fraction represontation (ref. 11). This is not to say that the
latter i=, in ceneral, inferior to the form~r. 1Indeed, just the opposite is
true, as will be clear to the reader. It is simply to say that for the purpose
of providing =25 accurate representation of C(k) by a ratio of polynomials, a
better numerical fit can be obtained using the least-zquares procedure than that
given by any szecific order trunca”ion of the continued fraction representation.
It is the fact that the latter may be used to generate a systematic and converg-
ing reccesentation of any order, as well as the theoretical support it gives for
the least squares method, which underscores its fundamental importance.

Wagner Punction

Once the aj,bj are known, one has a representation of the Wagner func-
ticn from equations (7). Results were obtained for the I = 2 approximant (of
fig. 1) and the better of the two I = 4 approximants (of fig. 3). For the
I = 4 representations whose results are shown in figure 3, the corresponding
Wagner function representation is indistinguishable from published results
(refs. 1 and 2). By contrast, the I = 2 result is somewhat different and it
is shown along with the a2xact result in figure 7., PFigure 7 and its compress-
ible counterparts are the ultimate results of the present procedure. The excel-
lent agreement between the I = 4 approximant and the exact result is very

satisfying.

APPLICATION TO OOMPRESS IBLE FLOW

Now let us turn to the effects of compressibility. Two examples will
be considered. They are a two-dimensional {lat plate at M = 0.7 and an
NACA 64A006 airfoil at M = 0,.84. The numerical data are, respectively, from
clausical aerodynamic theory, which asswmes an infinitesimal perturbation about
a mniform mean flow, and the transonic aerodynamic theory of Williams (refs. 12
and 13), which considers an infinitesimal dynamic perturbation about a non-
uniform mean flow including a shock wave. The shock motion due to the airfoil
motion is also taken into account in Wiiliams' theory and is consistently
treated as infinitesimal.
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Flat Plate at M = 0.7

Yor the flat plate at M = 0.7, the 1lift and moment (about midchord)
due to heaving and pitching (about midchord) are considered. Hence, four
aerodynamic transfer functions are computl=d: cLﬁ/U’ Cr cMﬁ/u’ and Cy .

These are shown in figures 8, 9, 10, and 11 along with an eight-term (pole)
representation using the present tethod. The b; were chozen from an examina-
tion of the imaginary parts of cLﬁ/U’ CLy’ C“ﬁ/u’ and Cm,> In general, it

is found that the extrema of the imaginary parts of these functions occur at
the same k vilues. Powever, they are more distinct for some functions than

- o>~ 7 2 : 4 . . P
for others. For ex2uple, compare \CLG/U)I in figure 8(b) to (CLu;3 in fig

ure 9(b). The latter actually offers a better definition of the extrema than
the former. The bj are as follows:

by =0

by = 0.03

by = -0.1 (where imaginary part has one extremum)

bg = -0.3

bg = -0.8 (where imaginary part has a near ex:remum)

bg = -1.2

by = -1,75 (another extremum)

bg = -3.5
The corresponding a; are given in table I. The results shown are good repre-
sentations and no others were studied; however, moderate changes in tke bj
values and even a reduction !n their total number would probably still lead to
satisfactory results. These b; were, in fact, suggested “v the results for
the seccend example, which chronologically were obtained first. It should bde
noted here that the results for C at high k are even better than indi-
cated as the dominant piston theory term has been subtracted out. See subse-
quent discussion following the next example.

Using the above resuits, the aerodynamic indicial functions were computed.

These are shown in figures 12 and 13. The definitions of the various aero-
dynamic terms are:

ﬁ/U ratio of heaving velocity to free-stream velocity

a angle of pitch

N



Cemt

CL L/ Uzb

Cy M/pU2p2

where L and M & e dimensional lift and moment, respectively, about midchord
and b is the dimensional half-chord. As with the incompresesible counterpart,
the Wagner function. figures 12 and 13 are the ult‘mate resulte of the present
method. They are cthe time histories the experimentalist would measure and the
inputs to the aeroelastic an's equations of motion. At short times (correspond-
ing to high fregencies) the results are expected to be less accurate, even
though at T = 0 the results are exact because of the enforcement of the piston
theory constraint in the frequency damain as k =+ =,

The previously published values (ref. 1) of indicial aerodynamic functions
for pitch and moment about the quarter-chord are available in a scmewhat dif-
ferent form. For heaving, the rondimensonal 1lift and moment are defined by

_ L
¢c 002 h
2n N (Zb)ﬁ
_ M
¢m\ = V)

pU .
m —-(2b) 2hy

For pitchirg, the published results are for a step change in pitching velocity,
but zero pitch angle - a mathematically well defined but physically artificial
motion. No comparisons were made for this case since comparisons of thr results
for heaving which are shown in figure 14 were 50 encouraging. WNote¢ that not zll
of the differences between the present results and those previouslv published
should necessarily be attributed to inaccuracies in the present approach. B5See
Ashley's discussion on pages 347 to 350 of reference 1, as well ac the original
papers cited in reference 1. Also see Edwards (ref. 14).

Vepa (ref. 7) has made a similar comparison to published results using his
procedare for M = 0.5. Similar agreement (and differences) were noted.

NACA 642006 Airfoil at M = 0.84

The example of an NACA 64A006 airfoil at M = 0.84 motivated the present
work and, in fact, was completed first. Hence, it is considered in somewhat
more detail, including a study of the effects of number of terms retained in
the exponential time-history representation and, also, the number of k values
used in the least-squares determination of the coefficients of the exponentials.
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A. R. Seebass,! of the University of Arizona, has also noted the effectiveness
of such representations for transonic aerodynamics.

In figures 15 to 18 the transfer functionc are shown along with represen-
tations obtained by the present method. Consider figure 15 first. Results are
shown for eight and four term representations; and, for the latter, 17 and 28
k values are used for the least—square¢- appruximation. These results give an
indication of the sensitivity of the metnod to changes in these parameters. The
bj are the same as those used in the M = 0.7 flat-plate example, and the aj
are given in table II.

It is clear from comparing the results of figures 15 to 18 to each other
and to the earlier results for M = 0 and 0.7 that

(1) dMore terms are required at the higher M to obtain a good
representation.

(2) More terms are required for pitching than heaving motion.
(3) More terms are reguired for moment than for 1lift.
These conclusions are intuitive but, nevertheless, important.

Consider in particular the results of figure 18 for moment due to pitching.
There is a substantial degradation of the representation at high k values as
the number of terms retained in the representation is reduced from eight to
four. The effect is exaggerated, however, because in figure 18 (as in fig. 11
for M = 0.7) the piston-theory contribution (refs. 1 and 2) which is dominant
at high frequencies has been subtracted out. The pistun-theory contribution is
given by

PT <4 \/ o\
2 | e | -
™M\
For a step change in Q, this gives a delta function at 1 = 0 which is sup-

pressed in the present presentation of the results. For simple harmonic motion,
this gives

PT 4 . .
CM = - = ikelkT (x = elkl)

which clearly dominates for high k over the residual shown in figure 18.

11n private communication with the author,
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Finally, consider the indicial functions which are displayed in fig-
ures 19 to 22. They are shown for both a four-term and eight-term approxi-
mation using 28 k values. Comparing these results to those for M = 0.7
(cf. figs. 12 and 13), it is seen the indicial 1ift behaves in a rather similar
fashion. Eowever, the indicial moments are different and generally smaller in
magnitude. This fact may explain the relativoly greater difficulty of obtaining
a good representation of the moments at M = 0.84 compared to M = 0.7. There
are, of course, no previously punlished results to which those of figures 19
to 22 may be compared.

Using his procedure for supersonic and transonic tlow, Vepa (ref. 7) main-
tains "for higher order approxsimants the poles behaved in an erratic manner,
often moving into the right half of the s|= ik] plane." Although Vepa sug-
gested a possible way of overcoming these problems, the present procedure by
its nature avoids the difficulty. Roge~ (ref. 6) has also noted this behavior
in his work and chooses the b; to be negative to avoid the problem. Dunn
(ref. 9) allows both a; and b; to be determined optimally in a least-squares
series but does irvoke the constraints that the bj; be negative.

CONCLUDING REMARKS

A simple, direct procedure is suggested for converting freguency-domai
serodynamics into indicial aerodynamics. The time~domain presentation is in
the form oi a sum of exponentials., Examples for classical incompressible and
subzonic, cowpressible flow suggest that known results can be reproduced accu-
rately. New results are presented for transonic flow based upon Williams'
freguency-Jdomain theory (AIAR J., vol. 1B, no. 6, June 1980j. All examples
studied are two-dimensional; however, no 4ifficulty is expected in treating
three-dimensional flows where the appropriate frequency-domain aerodynamic
representations are available.

Not unexpectedly, it is shown that more terms are required in the repre-
sentation for (1) higher transonic Mach numbers (though presumably for suffi-
ciently high Mach numbers this trend reverses), (2) pitching compared to heaving
motion, and (3) moment compared to lift.

Langley Research Center

Naticnal Aeronautics and Space Administration
Hampton, VA 23635

August 14, 1980
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TABLE I.-

AERODYNAMIC TRANSFER FUNCTIONS FOR

A FLAT PIATE AT M = 0.7

aj CLp /0 CLo: C"‘;x/ﬂ C!‘!u Potlfs'
1
aj B.798 8.798 4.4 4.4 0
aZ -1.3613 -1.0541 -.5378 =1.0241 -.03
ay -2.1095 -2.5259 ~1.6484 -.1414 -.1
ay -3.2864 -1.6087 .0058 -5.2324 -.3
ag 14.8169 5.2806 -.0369 42.879 -.8
ag -29.5748 ~3.5559 =5.1654 -102.0212 -1.2
aq 23.2814 4.493 2.4296 76.5064 -1.75
ag -4.8503 -4.1129 .54 -15.3762 -3.5




TABLE II.- AERODYNAMIC TRANSFER FUNCTIONS FOR

AN NACA 64A006 AIRFOIL AT M = 0.84

i ‘g Ly My Mo poles,
i
Four temms
a ag, 2 9.2 0 0
bg, 2 0
ay a_s5, 8886 -4.9091 1.708) .7379
b_s 9815 -
a3 a__ 0909 3.1026 -2.2094 —-4.8973
b__ 5006 -.8
ag 21,5415 -2.6314 .5012 4.1594
b2, 0442 -1.75
Eight terms
_— - ]
ay ag,2 9.2 -0.1 -0.1 0
as .5501 1. 3655 -.3135 -1.3147 -.03
a3 -5.1476 -6.384 1.6297 3.0863 -
ag -2.4487 1.3039 .379 -3.0981 -.3
ac 5.1096 -17.1372 -.2292 20.9301 -.8
ag -7.8209 45.2519 -3.922 -54.9848 -1.2
ay 7.8616 -34.5566 1.7436 43.1282 -1.75
ag -2.5421 5.7225 .8125 -7.6470 -2.5
428 values with Kmax = 3-75.
b17 values with Kmax = 1-0.
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: .6 .8 1.0 1.2 1.4

(a) Real part.

-.ZSF

1 [
1.6 1.8

2.0

(b} Imaginary part.

Figure 1.- Theodorsen function for I = 2, b, = 0,
32 = _0' 5-

b2 = -0.2'

a‘ = 1.0,



\

-05

12 1.4 1.6

2 K} K3} B 1.0
3

{b) Imaginary part.
Fiqure 2.~ Thecdorsen function for I = 4, by =0 by = -0.', b3 * -0.2,
= -0.3576, a3 * 0.1417, 24 % -0.2841.

b4 = -'0.‘, a‘ = 1.0, 32
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o —Exact

— Approximant

-.20

- (Ol

146

e

o 2 1 ® - N
[N

(b) Imaginary part.

jon for I =4 by = 0
- -0.2435, 34

ag = -0.1465, 233 ~

1.2 14 v ze

bz = —0.050 b3 = -0.2
= ..0,‘100'

- rheodorsen funct

rigure 3.
a‘ = 1.0,

t)4 = —0.61
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Jones’ approxia.ant

(a) Real part.

-.28

I l i | J
0 2 A4 [ 8 1.0 1.2 1.4 1.6 1.8 2.0
K

-
-

-
-

(b) Imaginary part.

Figure 4.- theodorsen function for I =3, by = 0, by = -0,0455, by = -0.3,
a] = ‘10' az = -00]65' 33 = -00335'

2



— — — Exact

= Approximant for | =3
using Jones' poles

{a) Real part.

-.25

1 l - |
K] .8 1.0 1.2 14 1.6 1.8 2.0

k
(b) Imaginary part.

Figure 5.- Theodorsen function for I =3, by =0, by =0, by = -0.0455,
by = -0.3, a; = 1.0, az = -0.1740, a3 ~ ~0.3166. (aj calculated by

least-squares procedure.)



- = .= Exact

= Approximant for I =4
using Desmarais’ poles

{(a) Real part.
-.25 —

-.20 -

- i 1 J | 1 i Il 1 J
0 .2 4 .8 .8 1.0 1.2 1.4 1.6 1.8 2.0

k

(b) Imaginary part.
Figure 6.~ Theodorsen function for I = 4, by = 0, by = -0.0594,

b3 = -0.2536, by = -0.6519, a; =1.0, ap = -0.1873, a3 = -0.2358,
ag = -0.0769. (aj calculated by least-squares procedure. )
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Figure 7.- Wagner function.
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— Clissical theor

QO  Fight-term representation

Asy mptolc\

(0] ——r

Q

(a) Real part.

1+
‘()\LQ__O—J()
. [

Asvmptote
( _E_> 0 <.
l

(b) Imaginary part.

Figure 8.- Lift due to her :ng for a flat plate at M = 0.7. 25k values,
knax = 3.0. (See table I for values of aj and bj.)
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5+ o O Eight-term representation
i «——=_Classical theory
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(a) Real part.

(o) Asymptote
° N

2l i 1 " |
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Figure 9.- Lift due to pitching for a flat plate at M = 0.7.
values of a; and
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(b) Imaginary part.

(See table I for
bi°)



— Classical theory

O Eigh'-term representation

{a) Real part.

(b) Imaginary part.

Figure 10.- Moment due to heavaing for a flat plate at M = 0.7. (See table I for
values of aj and bj.)



Clissical theory

¢ O Ewght~term representation
.
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= "
M O
a 0

(a) Real part.

[ ]
|

(b) Imaginary part.

Figure 11.- Mament due to pitrhing for a flat plate at M = 0.7.
(Sec table I for values of a; and bj.)
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Figure 14.- Indicial lift and moment for heaving of a flat plate at M = 0.7.
(See table I for values of a; and bj.)
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10 — (@] Eight terms: 28 k values: k 3.75

mas
e O Four terme: 28 & values: ko 3.75
A Four terms: 17 k values: Koo 1.0

M 0.84: Wilhams' theon

a4 i n | i " n A 1 . e 1 " ] 4 n n n J
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(a) Real part.
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(b) Imaginary part.

Figure 15.- Lift due to heaving for an NACA 64A006 airfoil.
values of aj and bj.)
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(See table II for



o Ficht terms
(@] Four terms
M 084 Willuams' theony

(1]

T
o y]
o

/ )
o}
o)
a
1
8 8]

> ot
w
de

(a) Real part.

‘Jl
)

ot —
Koz
~
]
|
:
)

Y S U - | S N . 4 i [ Y Y VY PO
0 1 4

F ol & L

(b) Imaginary part.

Figure 16.- Lift due to pitching for an NACA 64A006 airfoil. (See table II for
values of aj and b;.)
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O Eight terms
O Four terms
M - 0.84; Wilhams' theory
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(a) Real part.
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(b) Imaginary part.

Figure {7.- Mament due to heavirg for an NACA 64A006 airfoil. (See table II for
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vajues of aj; and bj.)



— M = 0.84, Willams’ theory
QO Enxht terms

] Four terms
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{b) Imaginary part.

Figure 18.- Mament due to pitching for an NACA 64A006 airfoil.
values of aj and bj.)

(See table II for
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